Reparametrizations and metric structures in thermodynamic phase space

نویسندگان

چکیده

We investigate the consequences of reparametrizations in geometric description thermodynamics analyzing effects on thermodynamic phase space. It is known that contact and Riemannian structures space are related to equilibrium statistical fluctuations Boltzmann-Gibbs mechanics. The physical motivation for this analysis rests upon possibility having, instead a direct control intensive parameters determining state corresponding reservoirs, set differentiable functions original variables. Likewise, we consider extensive variables accounting not having access find effect can be codified, geometrical terms, its structures. In particular, single out rank-two tensor enters definition metric which geometrically comprises information about such reparametrizations. notice even if these modified by reparametrizations, structure states preserved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

Representation of irreversible systems in a metric thermodynamic phase space 1

This paper studies geometric properties of a class of irreversible dynamical systems, referred to in the literature as metriplectic systems. This class of systems, related to generalized (or dissipative) Hamiltonian systems, are generated by a conserved component and a dissipative component and appear, for example, in non-equilibrium thermodynamics. In non-equilibrium thermodynamics, the two po...

متن کامل

Metric Space Structures for Computational Anatomy

This paper describes a method based on metric structures for anatomical analysis on a large set of brain MR images. A geodesic distance between each pair was measured using large deformation diffeomorphic metric mapping (LDDMM). Manifold learning approaches were applied to seek a low-dimensional embedding in the highdimensional shape space, in which inference between healthy control and disease...

متن کامل

Orthogonal metric space and convex contractions

‎In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath  might be called their  definitive versions. Also, we show that there are examples which show that our main theorems are  genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour,  {it Approximate fixed points of generalized convex contractions}, Fixed Poi...

متن کامل

Phase-space metric for non-Hamiltonian systems

We consider an invariant skew-symmetric phase-space metric for nonHamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skewsymmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered. PACS numbers: 45.20.−d, 02.40.Yy, 05.20.−y

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 2021

ISSN: ['1872-8022', '0167-2789']

DOI: https://doi.org/10.1016/j.physa.2020.125464